Portail de l'AF

Nouvelles

Projet du mois: Numberfields@home

Faites un don

Shoutbox

modesti:
2025-04-20, 07:49:02
Joyeuses Pâques :ane:
Rhodan71:
2025-04-17, 21:22:06
c'est parti pour un sprint sur Einstein
modesti:
2025-04-16, 10:08:44
Prochain sprint FB à partir du 17/4 à 19h UTC, soit 21h CEST/heure de Paris/Berlin/Madrid
Rhodan71:
2025-04-10, 11:14:03
Prochain sprint FB aujourd'hui à 17h UTC (19h heure de Paris)
modesti:
2025-04-08, 15:03:08
Pentathlon annoncé :)
modesti:
2025-04-08, 15:02:43
Radioactive à nouveau cassé :/
JeromeC:
2025-04-02, 19:01:28
Radioactive marche.
modesti:
2025-03-20, 22:55:26
Allez, les copains, on pousse encore un peu sur Einstein, SVP ! En unissant nos forces, la troisième place au FB est à notre portée d'ici à la fin du mois !  :bipbip:
Maeda:
2025-03-07, 21:53:11
C'parti !
[AF>Libristes] alain65:
2025-02-26, 02:26:05
Merci  :jap:
modesti:
2025-02-24, 11:27:41
Tout vient à point à qui sait attendre :siflotte:
ousermaatre:
2025-02-24, 10:47:28
patience  :D  Ca vient
[AF>Libristes] alain65:
2025-02-24, 08:43:55
l'annonce officielle, c'est pas la veille j'espère  :cpopossib:
Maeda:
2025-02-22, 09:58:51
On attend l'annonce officielle détaillée :D
[AF>Libristes] alain65:
2025-02-22, 08:25:50
Et c'est sur quoi ce raid ?
modesti:
2025-02-20, 23:06:46
A 18h28 par notre pharaon préféré, ici-même :D
[AF] Kalianthys:
2025-02-20, 20:50:52
Le raid a été annoncé ?
ousermaatre:
2025-02-20, 18:28:57
15 jours avant le Raid....  :D
modesti:
2025-02-01, 11:10:25
Bonne chasse aux nombres premiers !
modesti:
2025-01-31, 21:24:33
Spafo :D
Maeda:
2025-01-31, 20:11:40
Plutôt H-4h :)
modesti:
2025-01-31, 19:54:14
J-1  :banana:
[AF] Kalianthys:
2025-01-30, 18:53:31
modesti:
2025-01-30, 11:55:53
J-2 :gniak: :ange:
fzs600:
2025-01-02, 11:18:45
Bonne année a tous et bon crunch.
zelandonii:
2025-01-02, 11:08:45
Bonne année à tous et que vous soyez heureux.
Ironman:
2025-01-01, 15:55:54
Bonne année et bonne santé pour vous et vos proches !  :smak:
modesti:
2025-01-01, 07:53:37
Bonne et heureuse année à toutes et tous !

Recent

Voorwerp fever

Démarré par Heyoka, 24 Mars 2008 à 14:29

« précédent - suivant »

0 Membres et 1 Invité sur ce sujet

Heyoka

http://www.galaxyzooblog.org/

Ever since it was first identified, Hanny's Voorwerp has grabbed the attention of the Zookeepers and everyone else who comes across it. One reason we've been successful in getting such a wide range of observations over just a few months (and therefore why posts on here have been delayed!) has been that colleagues seem to find it equally compelling. So what is it? Our current best guess goes something like this:

A hundred thousand years ago, a quasar blazed behind the stars which would have already looked recognizably like the constellation Leo Minor. Barely 700 million light-years away, it would have been the nearest bright quasar, shining (had anyone had a telescope to look) around 13th magnitude, several times brighter than the light of the surrounding galaxy. This galaxy, much later cataloged as IC 2497, is a massive spiral galaxy which was in the process of tidally shredding a dwarf galaxy rich in gas - gas which absorbed the intense ultraviolet and X-ray output of the quasar and in turn glowed as it cooled. But something happened to the quasar. Whether it turned off, dropped to a barely simmering level of activity as its massive black hole became starved for gas to feed its accretion, or it was quickly shrouded in gas and dust, we don't see it anymore.

But we see its echo. How could we come to such startling conclusions? An earlier blog entry showed some of our earliest data, when we already knew that the gas in Hanny's Voorwerp was ionized in such a way that it must experience a radiation field of higher energy than normal stars can produce. In fact, it looks just like the pattern of emission given off by gas around the center of Seyfert galaxies, and on the outskirts of quasars and radio galaxies. This makes sense, except for the minor detail that we don't see the active nucleus that should be there to light up the gas.

However, we could start from calculations done by astronomers trying to understand these objects, which could tell us how much radiation it would take to light up the Voorwerp. This wound up telling us how many ionizing photons there are per atom in the gas (known as the ionization parameter). That meant that we could find out how bright the missing core had to be if we could learn how dense the gas is.

Spectra are wonderful things - there is a pair of emission features from ionized sulfur atoms out in the red whose ratio depends on how often the atoms undergo collisions, and therefore on the density where they float. We had been contacting colleagues all over the map to see who might be doing spectroscopy in the red, and were fortunate to be put in touch with Nicola Bennert, who is a postdoctoral researcher at the University of California campus in Riverside. She was about to work for several nights with Lick Observatory's 3-meter Shane telescope and a double spectrograph optimized to observe blue and red parts of the spectrum at once, and was intrigued by what we already knew of the Voorwerp.

She got a useful data set, in particular a very nice observation of the spectrum in red light. From this, we now know that the typical density of gas (for the pickier readers, that's the RMS density) is no greater than about 15 particles per cubic centimeter - which means that the UV and X-ray luminosities of the object were somewhat less than a hundred billion times the Sun's total energy output, in the range of quasars. (It was a nice extra feature that Nicola did her dissertation work on analysis involving measuring ionization parameters of gas in Seyfert galaxies, and she's enthusiastically joined in the project).

From the features of sulfur and nitrogen, we also have good evidence that these elements are not very abundant in the gas - maybe 10% of the fraction seen in our part of the Milky Way, more like what we find in dwarf galaxies such as the Small Magellanic Cloud. So the gas looks more like something from a low-mass dwarf rather than something ejected from the center of a luminous galaxy like IC 2497.

voorspec_small.gif

Meanwhile, we had asked for a quick look with instruments on the Swift satellite. Swift is designed to detect gamma-ray bursts and follow them up quickly with X-ray and ultraviolet or visible-light observations, to localize them as fast as possible ("Swift - catching gamma-ray bursts on the fly" is their motto). Thus, Swift spends a lot of its time staring at the sky, especially parts of the sky that are easy to see from ground-based telescopes, waiting for something to happen. From being on one of too many NASA committees, Bil recalled that the Swift science team had realized that, since it didn't matter exactly where they looked waiting for something to happen, they have a program to take requests. Usually these requests are for transient, time-sensitive events, but principal investigator Neil Gehrels agreed that our request would be appropriate.

So we crammed our whole science argument into 300 words and it was approved. Showing that "Swift" has more than one meaning, within a week we had our data. We had two questions in mind for its instruments. First, its X-ray telescope (known as the XRT) would easily see any active galactic nucleus, even a typical Seyfert galaxy. It saw - nothing. Second, we asked for ultraviolet images with the 30-cm Ultraviolet/Optical Telescope (UVOT). These were intended to tell whether the light outside of the bright gaseous emission lines came from stars or was reflected from dust particles. The distinction could be made because, as in the scattering that makes our sky blue, short-wavelength radiation scatters more effectively from interstellar dust. As an example, the blue reflected piece of the Triffid Nebula is bluer than the illuminating star - in fact bluer than any kind of star can be. And this is what we found in the Voorwerp. Filtering a slice of ultraviolet light that shouldn't be much affected by the gas, we found the object to be ten times brighter in the mid-ultraviolet than in the shortest wavelength seen by the Sloan Survey. Not only does the gas see something bright, so does the dust.

uvotvsv_small.jpg
UVOT image on the left, v band on the right

So now we have a bunch of pieces of the puzzle. Highly ionized gas, ionized by nothing we can see. Dust reflecting ultraviolet light from no apparent source. No central X-ray source, which makes it very hard to hide
something behind a cloud of gas and dust that leaves it visible from the Voorwerp. This was starting to look like a giant version of a phenomenon that astronomers have had to rediscover for several generations now - the light echo. Over the years, when we see a supernova explosion, bright nova, or a star that for some other reasons flares brightly, we often see reflections from foreground dust. If we trace the geometry of what dust we see at different times after the outburst, it must fall along an ellipsoid with the star at one focus and ourselves at the other.

It's important that the echo has spectral characteristics of the exciting source. One team has used this fact to find locations of supernovae which we would have seen in the Large Magellanic Cloud centuries ago, as their reflections still come our way from larger and larger circles of foreground dust (see this very cool and very new press release). And now we are proposing that we've found the light echo from a faded quasar, which was there 50-75,000 years ago but is invisible now.

The importance of checking on this whole picture goes well beyond the admitted coolness value, or the flashiness of a proposal that we hope our colleagues who decide who gets to use big telescopes will look on with favor. We already know that quasars (and their relatives such as Seyfert galaxies) can undergo dramatic change on everything from cosmic timescales to human ones. We observe them to fluctuate in brightness, sometimes dramatically, over times as short as weeks. And at the outside, relations between quasars and mergers in some of their surrounding "host" galaxies wouldn't exist if the quasars stay bright for much more then the nearly billion-year duration of a galaxy merger. (Only in astronomy and cosmology do we get to lump "mere" and "billion years"). In fact, we know that the whole population of quasars has changed over cosmic time - there used to be many more, and they grew brighter, in an era about 10 billion years ago. For that matter, the most powerful quasars must be temporary - if one were to shine at these enormous levels for all of cosmic history, even as miserly as gravitational energy can be about producing energy wile consuming mass, the central object would have long ago eaten its entire surrounding galaxy.

Of course we want to know more. There are more observations we can make which would test this idea, and tell us more about the nature of the Voorwerp and the history of the illuminating core. Chris headed up a proposal to map the gas with the OASIS system on the 4.2-meter William Herschel Telescope, so we could measure the Voorwerp's Doppler shifts point-by-point and see whether there are correlated changes in strengths of emission lines that would show us brightening and fading of the central source (which would make rings in our view unless the gas has a very odd structure). And there was the Hubble proposal, which would take high-resolution images of the gas in two emission lines and then look in filter bands between them to see whether the Voorwerp has stars. Actually, with all the reflecting dust, we hope mostly to see star clusters, to tell whether it started life as a dwarf galaxy. And we want to take a really close look at the nucleus of IC 2497, using Hubble's exquisite resolution to isolate the light from its innermost region in search of any gas that is lit up by even a weak active nucleus. Speaking of the nucleus of IC 2497, Bill is even as we write working to complete a proposal to use Chandra to see if we can tease out any X-rays from a now-quiet AGN. We've also requested time in the radio to see if we are only seeing part of a much larger structure.

So here we have a new possibility - of watching the history of a quasar either flaring up, practically turning off, or being hidden over a time span that we've had no other way to examine. The pattern of light emitted by gas in Hanny's Vooorwerp, and the way its dust reflect the quasar light, should be able to trace the history of its decline. Never mind heading back to the future, we can go onward into the past. Once in a while, we have the opportunity to do what paleontologists can do only in the movies.

(Chris and Bill weren't sure who should blog this. So in the spirit of Galaxy Zoo, we both did.)

Heyoka

Depuis sa découverte, l'objet céleste Hanny's Voorwerp a retenu l'attention de toute la communauté GalaxyZoo et de tout ceux qui ont eu vent de la découverte. Les collègues astronomes ont trouvé cet objet très intéressant, c'est l'une des raisons pour laquelle nous avons réussi à obtenir toute une série d'observations en seulement quelques mois (et c'est aussi pourquoi tout nouvel article sur le blog a été retardé !). Alors, quel est la nature de Voorwerp ? Nous allons vous fournir l'une des explication qui nous semble la plus vraisemblable :

Il y a cent mille an, un quasar brillait à l'arrière plan d'étoiles que nous avons déjà identifié comme appartenant à la constellation du petit lion. A peine 700 millions d'années lumières plus loin, il devenu le quasar le plus brillant luisant à une magnitude apparente proche de 13 (il est possible de l'observer à l'aide de n'importe quel petit télescope d'amateur), son éclat est plusieurs fois plus brillant que la lumière des galaxies environnantes. Cette galaxie, plus tard catalogué sous le nom de IC 2497, est une galaxie spirale massive prise en flagrant délits de prédation d'une galaxie naine riche en gaz, du gaz qui a absorbé les ultra-violet et les rayons X émis par le quasar. Mais quelque chose arriva au quasar. S'est il éteints lorsque son trou noir a été privé de gaz pour alimenter son accrétion, ou a s'il été rapidement entouré de gaz et de poussière, en tout cas nous ne le voyons plus.

Mais nous voyons son écho. Comment en est-on arrivé à ces étonnantes conclusions? Un précédent article du blog montrait quelques-unes de nos premières données, nous savions déjà que le gaz de Hanny Voorwerp était ionisé d'une telle façon qu'elle émettait un champ de rayonnement d'une énergie plus élevée que ce que les étoiles normales pouvaient produire. En fait, cela ressemble aux émissions provenant du gaz autour du centre des galaxies de Seyfert et à la périphérie des quasars et des radiogalaxies. Cela paraît logique, à l'exception d'un petit détail : nous ne voyons pas le noyau actif qui devrait être présent pour "allumer" le gaz.

Heyoka

Je me charge de traduire tout le reste.

Il faudrait juste que quelqu'un traduise ceci :

CitationSpectra are wonderful things - there is a pair of emission features from ionized sulfur atoms out in the red whose ratio depends on how often the atoms undergo collisions, and therefore on the density where they float. We had been contacting colleagues all over the map to see who might be doing spectroscopy in the red, and were fortunate to be put in touch with Nicola Bennert, who is a postdoctoral researcher at the University of California campus in Riverside. She was about to work for several nights with Lick Observatory's 3-meter Shane telescope and a double spectrograph optimized to observe blue and red parts of the spectrum at once, and was intrigued by what we already knew of the Voorwerp.
 
She got a useful data set, in particular a very nice observation of the spectrum in red light. From this, we now know that the typical density of gas (for the pickier readers, that's the RMS density) is no greater than about 15 particles per cubic centimeter - which means that the UV and X-ray luminosities of the object were somewhat less than a hundred billion times the Sun's total energy output, in the range of quasars. (It was a nice extra feature that Nicola did her dissertation work on analysis involving measuring ionization parameters of gas in Seyfert galaxies, and she's enthusiastically joined in the project).
 
From the features of sulfur and nitrogen, we also have good evidence that these elements are not very abundant in the gas - maybe 10% of the fraction seen in our part of the Milky Way, more like what we find in dwarf galaxies such as the Small Magellanic Cloud. So the gas looks more like something from a low-mass dwarf rather than something ejected from the center of a luminous galaxy like IC 2497.

Thrr-Gilag

Les spectres sont des choses merveilleuses --  il y a un doublet en émission dans le rouge (grande longueur d'onde dans le spectre visible), qui est caractéristique des atomes de soufre ionisés, dont le ratio dépend de la fréquence à laquelle ces atomes subissent des collisions, et donc de la densité du milieu où ils sont présents. Nous avons contacté des collègues de part le monde pour voir qui pouvait faire de la spectroscopie dans le domaine du rouge, et nous avons eu la chance d'être mis en contact avec Nicola Bennert, qui est une chercheuse en Post-Doc (CDD après une thèse il me semble) de l'Université de Californie sur le campus de Riverside. Elle était sur le point de travailler pour plusieurs nuits avec l'observatoire Lick et son télescope de 3 mètre -- Shane -- et son double spectromètre optimisé pour observé les parties rouges et bleues du spectre en une seule fois, et était intriguée par ce que nous savions déjà sur le Voorwerp.

Elle a obtenu une série de données utiles, en particulier une très belle observation du spectre dans le domaine du rouge. A partir de cette observation, nous savons maintenant que la densité typique du gaz (pour les lecteurs pointilleux, chicaneurs, avertis ? lequel va le mieux ? c'est la densité RMS (moyenne des moindre carré)) n'est pas plus élevé qu'environ 15 particules par centimètre cube -- ce qui signifie que la luminosité UV et rayon X de l'objet est environ 100 milliards de fois moindre que l'énergie totale sortant du Soleil, dans le domaine des quasars. (c'était un bon point supplémentaire que Nicola ait fait son travail de dissertation (thèse ?) sur l'analyse concernant la mesure des paramètres d'ionisation des gaz dans les galaxies de Seyfert, et qu'elle a rejoint avec enthousiasme le projet).
 
D'après les caractéristiques du soufre et de l'azote, nous avons aussi une bonne preuve que ces éléments ne sont pas très abondant dans le gaz -- peut être 10 % de la fraction visible dans notre partie de la voie lactée, plus de l'ordre ce que l'on trouverait dans les galaxies naines comme le petit nuage de Magellan. Donc le gaz semble plus comme quelque chose provenant d'une petite (faible en masse) naine plutôt que quelque chose d'éjecté du centre d'une galaxie lumineuse comme IC 2497.

Heyoka

J'ai presque finis, j'ai juste un problème de compréhension pour ces 2 phrases :

CitationFrom being on one of too many NASA committees, Bil recalled that the Swift science team had realized that, since it didn't matter exactly where they looked waiting for something to happen, they have a program to take requests. Usually these requests are for transient, time-sensitive events, but principal investigator Neil Gehrels agreed that our request would be appropriate.

CitationThe importance of checking on this whole picture goes well beyond the admitted coolness value, or the flashiness of a proposal that we hope our colleagues who decide who gets to use big telescopes will look on with favor.

xipehuz

@ Heyoka : voila ce que je te propose.

Pour le 1er paragraphe :
"Pour avoir participé à l'un des innombrables comités de la NASA, Bill s'était rappelé que l'équipe scientifique de Swift, étant donné que l'endroit du ciel qu'ils observaient dans l'attente d'un évenement n'avait pas d'importance [pour leurs recherches], avait mis en place un programme permettant d'accepter les demandes d'observation d'autres chercheurs. Habituellement, ces requetes portent sur des évènements fugaces qui ne se répètent pas, mais Neils Gehrels, leur responsable de recherche, considéra notre demande comme valable."

Pour le 2ème paragraphe :
"L'importance d'avoir une vue d'ensemble de ce phénomène dépasse de loin le côté "cool" de la chose, ou l'effet d'annonce d'une proposition qui, nous l'espérons, sera perçue favorablement par ceux de nos collègues qui décident de l'attribution du temps d'observation sur ces grands télescopes."

@ Thrr : Je traduirais comme toi "pickier" par "pointilleux"

 :hello:  A la prochaine.
Je prends les compliments comme des reproches d'hypocrites (Palinka)

SMF spam blocked by CleanTalk